|
tuple | charm_jet_tagging_study.parser argparse.ArgumentParser() |
|
string | charm_jet_tagging_study.help "Directory containing input files" |
|
tuple | charm_jet_tagging_study.args parser.parse_args() |
|
list | charm_jet_tagging_study.branchlist ["Jet.PT", "Jet.Eta", "Jet.Flavor", "Jet.BTag", "Particle.Px", "Particle.Py", "Particle.Pz", "Particle.E"] |
|
tuple | charm_jet_tagging_study.df eat.UprootLoad([f"../{args.input}/*/out.root"], "Delphes", branches=branchlist) |
|
tuple | charm_jet_tagging_study.n_gen len(df) |
|
dictionary | charm_jet_tagging_study.aux_data {} |
|
tuple | charm_jet_tagging_study.var_array np.concatenate(df[aux_var].to_numpy()) |
|
dictionary | charm_jet_tagging_study.draw_config {} |
|
tuple | charm_jet_tagging_study.df_20rs2 eat.UprootLoad([f"../CC_DIS_e10_p100_B15_dR5_maxIP3mm_trkpt10_22sigmin_lha_20Rs2/*/out.root"], "Delphes", branches=branchlist) |
|
tuple | charm_jet_tagging_study.df_21rs2 eat.UprootLoad([f"../CC_DIS_e10_p100_B15_dR5_maxIP3mm_trkpt10_22sigmin_lha_21Rs2/*/out.root"], "Delphes", branches=branchlist) |
|
list | charm_jet_tagging_study.xvar draw_config['xvar'] |
|
list | charm_jet_tagging_study.xrange draw_config['xrange'] |
|
list | charm_jet_tagging_study.xbins draw_config['xbins'] |
|
list | charm_jet_tagging_study.ylimits draw_config['ylimits'] |
|
list | charm_jet_tagging_study.xlimits draw_config['xlimits'] |
|
list | charm_jet_tagging_study.yunits draw_config['yunits'] |
|
list | charm_jet_tagging_study.xunits draw_config['xunits'] |
|
tuple | charm_jet_tagging_study.charm_ct18nnlo eat.DifferentialTaggingYield(df, x=xvar, xrange=xrange, xbins=xbins, which='charm', process='CC_DIS_e10_p100_CT18NNLO') |
|
tuple | charm_jet_tagging_study.charm_ct18nnlo_20rs2 eat.DifferentialTaggingYield(df_20rs2, x=xvar, xrange=xrange, xbins=xbins, which='charm', process='CC_DIS_e10_p100_CT1820Rs2') |
|
tuple | charm_jet_tagging_study.charm_ct18nnlo_21rs2 eat.DifferentialTaggingYield(df_21rs2, x=xvar, xrange=xrange, xbins=xbins, which='charm', process='CC_DIS_e10_p100_CT1821Rs2') |
|
list | charm_jet_tagging_study.N_20 charm_ct18nnlo_20rs2[2] |
|
tuple | charm_jet_tagging_study.errN_20 np.zeros(len(N_20)) |
|
tuple | charm_jet_tagging_study.R_N_20 np.ones(len(N_20)) |
|
list | charm_jet_tagging_study.N_21 charm_ct18nnlo_21rs2[2] |
|
| charm_jet_tagging_study.diff_20_21 N_21-N_20 |
|
tuple | charm_jet_tagging_study.R_N_diff np.ones(len(N_20)) |
|
tuple | charm_jet_tagging_study.gridspec fig.add_gridspec(ncols=1, nrows=1, width_ratios=[1], height_ratios=[1]) |
|
list | charm_jet_tagging_study.bins charm_ct18nnlo[0] |
|
list | charm_jet_tagging_study.bin_widths charm_ct18nnlo[1] |
|
tuple | charm_jet_tagging_study.one_line np.ones(len(bins)) |
|
tuple | charm_jet_tagging_study.ax1 fig.add_subplot(gridspec[0, 0]) |
|
string | charm_jet_tagging_study.R_N_20_label "Stat. Uncertainty [CT18NNLO, $R_s=2s/(\overline{u}+\overline{d})=0.325$ (suppressed)]" |
|
list | charm_jet_tagging_study.errorboxes |
|
tuple | charm_jet_tagging_study.pc mpl.collections.PatchCollection(errorboxes, facecolor='#7A6E67', alpha=0.35, label=R_N_20_label) |
|
tuple | charm_jet_tagging_study.enhanced ax1.errorbar(bins, R_N_diff, xerr = bin_widths/2, marker='s', ms=10, ls='none', linewidth=2, fillstyle='none', color='#003066', label='CT18ZNNLO with enhanced strangeness, $R_s=2s/(\overline{u}+\overline{d})=0.863$') |
|
string | charm_jet_tagging_study.xvar_symbol "p_T" |
|